
NASA-CR-194043
• j

Experimental Facility for Implementing Distributed

Database Services in Operating Systems*

Bharat Bhargava

Enrique Mafia

John Riedl

Technical Report Number CSD-TR-930

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

Abstract

Distributed database systems need special operating system support. Support rou-

tines can be implemented inside the kernel or at the user level. The decision depends

on the tradeoff between performance and complexity. Kernel-level functions while ef-

ficient, are hard to implement. User-level implementations are generally penalized

by poor performance and lack of security. This paper proposes a new approach to

supplement and/or modify kernel facilities for database transaction processing. Our

experimental facility called Push is based on an extension language interpreted within

the kernel, that provides the flexibility and security required. Our implementation

provides the efficiency of kernel-resident code as well as the simplicity and safety of

user-level programming. This facility enables experimentation that would be difficult

and time-consuming in current environments. The overhead of the Push implementa-

tion can be factored out to give a good estimate of the performance of a native kernel

implementation. We have used Push to implement several kernel-resident services. A

multicast implementation in Push has an inherent overhead of 0.32 milliseconds per

additional site. The corresponding overhead for direct kernel-level implementation is

0.15 milliseconds and for a user-level implementation 0.57 milliseconds.

• Thisresearchissupported by NASA and AIRMICS undergrantnumber NAG-1-676, NSF grantIRI-

8821398, and AT&T.

N94-70471

(NASA-CR-194043) EXPERIMENTAL

FACILITY FOR IMPLEMENTING

oISTRI_UTED oATA_ASE SERVICES IN
OPERATING sYSTEMS (Purdue Univ.) Unclas

21P
Z9/82 0181676

1 Introduction

Operating system services have to be constantly modified and extended in order to adjust

the system to changing environments and applications. New or alternative operating sys-

tem facilities can be implemented either inside the kernel or in user-level processes. Many

times, the decision is based on the simplicity versus efficiency argument. Complexity and

efficiency are characteristic of kernel-resident code, while simplicity and poor performance

are characteristic of user-level code. This paper describes a system called Push, that facil-

itates changing the functionality of the operating system kernel dynamically. It combines

the flexibility and safety of user-level code with the efficiency and security of kernel-level

code. Push can be used to implement semantically-rich system call interfaces that provide

enhanced support for specific transaction processing systems.

The Push system consists of a Push machine, a Push assembler, and a set of Push

tLtilities. The Push machine is incorporated in the operating system kernel. It allows users

to run their own code inside the kernel. The Push machine hides the complex kernel data

structures and mechanisms from the user. The interface offered by the Push machine is

independent of the hardware and operating system. The assembler translates user-level code

to the internal representation understood by the Push machine. Push utilities initialize

the Push environment, add/delete assembled Push programs to/from the kernel, and print

information about loaded Push programs. A prototype of this system has been implemented

in the context of the Unix 1 operating system. We have used this prototype to conduct

experiments on new kernel-resident support for distributed transaction processing.

There are two types of applications for Push. It can be used as an experimental tool or

as an operational tool. As an experimental tool, Push can be used to prototype different

alternatives that provide particular operating system services. The prototypes can then be

tested in the target environment before making the final implementation in the kernel. Push

has the advantage that the rest of the system is not disrupted while the experiments are

taking place. There is no need to recompile and reboot the kernel. In addition, the protection

scheme of Push avoids system crashes due to bugs in the new services. When Push is used as

an operational tool, Push routines can be added to or deleted from the kernel dynamically

during normal operation of the system. This feature introduces a form of adaptability to

the system.

Database implementors have suggested that additional support in the underlying oper-

ating system is needed for efficiency [Sto81, SDE85, Spe86]. Push provides a facility for

experimenting with new or extended operating system services. Examples of these services

include buffer management, file system support, process management, interprocess commu-

nication, concurrency control, atomicity control, and crash recovery. The services that are

present in current operating systems are general-purpose and do not satisfy the demands of

1Unix is a trademark of AT&T Bell Laboratories.

distributed transaction processing algorithms [Sto81. SDE85, BM89]. For instance, locking

facilities and buffer management are generally implemented by database systems because

the services provided in operating systems are inadequate.

Section 2 discusses design, implementation, and performance issues of Push. Section 3

describes experiments conducted with Push. In section 4, we describe alternative approaches
that have been used to achieve flexible and adaptable operating systems. Finally, section 5

summarizes the paper and describes our future plans in this area.

2 Design and Implementation of Push

Push is a new approach for kernel extensibility. New algorithms can be coded in Push

and loaded into the kernel without disturbing the rest of the svstem. We are specifically

interested in kernel-resident services for efficient support of transaction processing. For

instance, a multi-phase commit protocol can be written in this language that would send

and receive two rounds of messages with a single system call.

Push

Program ssemble)

Push routines

@ser Process_

'ush

User

Kernel

Communication

File System

_ Process Mgmt.

Figure 1: The Push system architecture

Figure 1 shows the details of the Push architecture. The user writes a desired service in

a high-level language. The user program is assembled into Push machine code. This code

is then loaded into the kernel and stored in a special data structure. Now, the user can use

the new operating system feature by invoking the corresponding Push routine with a special

system call. This system call activates the kernel-residentPush machine, which runs the
Push program on behalf of the user. The Push virtual machine provides the user with a
high-levelabstraction of basickernelservices,including primitives for processmanagement,
file system services,and interprocesscommunication.

UserProcess) _erver Proces_

User

Kernel

InterprocessCommunication

ProcessManagement

Memory Management

Disk Services

Other services

Kernel Services

Figure 2: The serverapproach

Figure 2 illustrates the alternative approachof having the new service implemented at

the user level, as a separate server process. Note the context switch overhead introduced

by the frequent need to cross the user-kernel boundary. The boundary crossing is necessary

for two reasons. The user process and the server can communicate only through the kernel.

Moreover, the server needs to access kernel tables and routines via the system call interface.

For example, if the server process implements multicasting, the number of user-kernel inter-

actions grows proportional to the number of members in the destination multicast group. In

contrast, the Push approach requires only one such interaction.

2.1 Design Issues

In designing Push there are several considerations.

1. The Push machine should protect the rest of the kernel address space from access by

the Push programs. An erroneous program may produce incorrect results for its users,

but it must not violate the integrity of the kernel.

2. Push programs must be efficient to execute. If Push is inherently slow, the primary

goal of achieving high performance cannot be met.

3. Push should provide simple timer services to the programs. In a distributed environ-

ment, error handling must include support for detecting lost messages.

4. A Push program must not be able to monopolize the CPU.

There are several approaches to protect the kernel address space from arbitrary access bv

Push programs. The first is to develop a user-level compiler that produces type-safe code.

compiling in run-time checks where necessary. The compiler would mark the programs in an

unforgeable manner and a privileged loader would be the only program with permission to

push programs into the kernel 2. Alternatively, the kernel could accept programs in the high-

level language and compile the programs itself. The difficulty with these two approaches is

that such a compiler would be difficult to port to new architectures. In addition, the loading

of compiled programs safely into the kernel would be tricky. Implementing a compiler in the

kernel has the further disadvantage that it would increase the kernel size. We chose to design

a virtual machine within the kernel for running user programs. The Push machine is stack-

based, with a simple instruction set, and a design that provides for simple implementation.

Performance is a potential problem of the virtual machine approach. Both the size of the

virtual machine and the execution time of the Push instructions must be kept low. The size

of the Push machine will affect the space left for user processes, and may lead to increasing

the paging activity in the system. In order to determine if favorable performance results can

be achieved by the use of Push, we have to contrast the interpretation overhead with the

disadvantages of user-level code.
In addition to protecting the kernel address space, we must prevent the monopolization

of the CPU by the processes running Push programs. This protection is achieved by running

the programs with interrupts enabled. While executing kernel routines such as 'receive',

interrupts are disabled as usual, but Push has no command to affect the interrupt status.

Hence clock interrupts will occur as usual, and the kernel will make its normal time-slicing

decisions. Unfortunately, Unix only replaces the executing process upon entering or exiting

the kernel, and Push programs may loop indefinitely within the kernel. Our solution is

to add code that checks for runaway Push programs to the clock interrupt routine. If a

Push program is running when a clock interrupt occurs, the routine increments a special

'wound' counter in the Push program. If the wound counter is incremented beyond a fixed

limit, the interrupt routine terminates the Push program, returning an error message to the

2For instance, the compiler could include a cryptographic checksum in the compiled program.

user. In addition, the Push program is purged from the table of programs and a message

is printed on the console, so that the same program does not continue to monopolize the

CPU. Long-running Push programs may need a method to increase the number of clock ticks

permitted.

Many of the Push programs will need timer services so messages can be retransmitted or

timeout failures can be returned to the user. Our design supports a simple timeout facility

that invokes the program at a specified label after a certain time (specified in milliseconds)

elapses. The timeout is supported by the clock interrupt routine that keeps a list of pending

timeouts in an increasing order of time. When a timeout expires, the clock routine checks to

see if the program is still active. If so, the clock routine cleans up any queues on which the

program was waiting, sets its execution point within the interpreter to the specified address.

and returns the calling process to the run queue. When the process is rescheduled, it begins

interpreting again at the new address.

2.2 Push Language Details

Push provides a simple stack-based language which can be executed efficiently within the

kernel. The programs consist of two sections. The declaration section includes the decla-

ration of input-output parameters, constants, and local variables. Parameters are of three

types: input, output, and inout. Parameters and local variables can be defined as integers

or as pointers to strings of bytes. Push programs may invoke the kernel memory allocator

to initialize pointers. The executable section consists of a sequence of Push instructions. In

addition to the stack operations, Push provides special operations that allows the user to

access basic kernel services. Appendix A summarizes the operations available in Push. One

operation is specified per line. Labels, if present, must proceed the operation code and the

operands. Comments preceded by the character Y,can be inserted in a separate line or after

a Push statement. Appendix B shows a sample Push program that implements multicasting.

The current implementation of the Push system includes an assembler for the stack

language. The assembler translates user-level programs into Push machine code. This code

is represented as an array of 4-byte words. Each declaration and instruction in the program

is represented by one such word. The first byte stores the operation code, the second byte

encodes information about the nature of the operand, and the last two bytes are used to store

the operand itself. The operand can be a constant, a Push variable, or a pointer to a Push

variable. The assembler is 884 lines of C code, and compiles to 60 Kbytes, unoptimized. A

Push disassembler is 332 lines of C code, and 20 Kbytes compiled. A future implementation

will include a compiler from a subset of C to the assembly language.

2.3 The Push Machine

Assembled Push programs are loaded into the kernel using a special system call, Pushcode.

Pushcode takes two arguments: the name of a Push program and the address of the assembled

program. The programs are stored in an array and are looked up by name when invoked. A

table keeps information about the Push programs loaded into the kernel. This information

includes the name of the program, its kernel address, length, owner, and access rights. The

owner of a program can execute, remove, and overwrite it. Programs can be marked as

sharable. This means that other users beside the owner can execute it. Program names that

will be used by several users should be registered before users are permitted to login and

marked as sharable. A separate system call is used to remove a program from the kernel's

table. A third system call prints information about the loaded programs. A shell 3 program

accepts the name of a source Push routine, assembles it. and loads the assembled code into

the kernel using the Pushcode system call.

A Push procedure that has been loaded into the kernel is invoked by a special system call.

Pushrun. The call to Pushrun requires two arguments: the name of the Push procedure to

be invoked and a pointer to a vector of arguments for the Push procedure. Each executing

Push program is provided with an execution stack which contains the parameters, local

variables, and the values dynamically pushed into it while the program is running. When a

procedure is invoked, the arguments indicated in the program definition as input or inout are

copied into the kernel address space. Arguments indicated as output are copied from kernel

to user address space immediately before the Push procedure returns. Push programs can

allocate/deallocate memory dynamically. A table records the address, length, and read/write

access rights of allocated memory. When a process wants to access a block of dynamic

memory to read or write, Push checks the boundaries of that block of memory against

the information kept in the table. When the program terminates, all allocated memory is

released automatically.

The first implementation of Push runs inside SunOS 4.0 in Sun 4 3/50's. The interpreter

consists of 800 lines of C code, and takes about 10 Kbytes of memory. Ten Push programs

of 100 statements each consume 5 Kbytes, including the run time stack. The entire Push

implementation increases the size of the kernel by less than 20 Kbytes, which is relatively

small compared to the total size of the kernel. We are using a streamlined version of SunOS

4.0, which is 584 Kbytes, including the Push interpreter.

3A shell is a Unix command-line interpreter.
4SunOS and Sun are trademarks of Sun Microsystems

3 Experiments with Communication and Distributed

Commitment

In order to illustrate the utility of the Push software, we developed several database-oriented

services. These services include the multicast routine listed in appendix B, a multi RPC facil-

ity, a distributed commitment protocol, and the file copy utility shown in appendix C. In this

section, we compare the performance of the Push programs with the performance of similar

services implemented at the kernel and user levels. To implement the user and kernel versions

of the communication services, we used the SE suite of protocols. SE (Simple Ethernet) is

a set of streamlined, low overhead communication protocols for the Ethernet [BMR87]. The

three services compared in each of these experiments provide the same functionality.

Experimental Method. All of the experiments were run in similar conditions. The ma-

chines were idle, and the measurements were taken at night when the network was relatively

idle. The timings were done on a Sun 3/50 with a special microsecond resolution clock s. The

file svstem and multicasting experiments were done with the system in single-user mode, and

physically disconnected from the rest of the ethernet. Confidence intervals computed for the

multicasting experiment were always less then 5% at 95% confidence. Confidence intervals

for the other experiments have not yet been computed, but are also expected to be good.

3.1 Multicasting

The programs considered for this experiment send a 20 byte message to the set of destinations

in the multicast group and return. The user-level SE multicast utility is implemented on top

of the SE device driver, which provides point to point Ethernet communication. In order to

support multicast, this utility has to call the device driver for each member in the multicast

group. The kernel-level SE multicast utility uses the multiSE device driver [BMRS89]. This

device driver can send the same message to a group of destinations on the Ethernet with

one system call. Figure 3 shows these three approaches for multicasting.
The simulation of multicast inside the kernel is an important service for short-lived mul-

ticast groups. Short-lived multicast groups are frequently used in distributed transaction

processing systems. Each transaction involves a different subset of sites, based on the dis-

tribution of replicas of items read or written[BHG87]. Multicasting to the subset of sites

happens during transaction processing (to read/write or to form quorums[Gif79]) and during

transaction commitment. There are too many such subsets to define multicast groups for

each possible subset. The use of multicast mechanisms that require group initialization is

inadequate, because of the overhead of setting up the multicast group.

5The times were collected using Peter Danzig's and Steve Melvin's timer board. It uses the timer chip
AM9513A from Advanced Micro Devices, Inc. The timer has a resolution of up to four ticks per microsecond.

8

UserProcess) @ser Process) @ser Process)

 ushM ch,
Multicast

Push

Program

Kernel

Ethernet

(a) User-level SE (b) Kernel-level SE
multicast multicast

(c) Push multicast

Figure 3: Approaches for Multicasting

In table 1, we compare the performance of the three multicast methods. Kernel-level SE

multicast shows the best performance, and user-level SE multicast the worst. The difference

between the times for kernel-level SE and Push is due to the interpretation overhead of the

Push program. On the other hand, the multiSE driver takes significantly more effort to

implement, debug and maintain.

A more precise picture of the intrinsic preformance of the three methods is presented in

table 2. The table shows the overhead added per additional destination in the multicasting

group. This overhead includes the time consumed by the network interface, which is fixed.

In our case, this time (0.6 ms) includes the conversion of the message to mbufs 6, their

transmission over the cable, and the processing of the corresponding interrupt. The first

column represents the net overhead of each method. The execution of the loop in the Push

program (13 Push instructions) takes about 320/,s, which averages 25 #s per instruction.

6Mbufs are special buffers used by the Unix communication subsystem.

9

Number

of
destinations

1

5

10

15

20

kernel

level

SE

1.2

4.2

8.0

11.7

15.4

Table 1: Multicasting

user

level

SE

1.2

5.9

11.7

17.5

23.4

timing

Push

2.7

6.6

11.0

15.6

20.2

(in ms)

M ulticast

method

Kernel-level

Push

User-level

Variable

overhead

0.15

0.32

0.57

fixed

overhead

0.60

0.60

0.60

Fotal

overhead

0.75

0.92

1.17

Table 2: Incremental processing time per destination (in ms)

3.2 Multi RPC

The setup for this experiment is similar to the one used for multicasting (figure 3). The

user-level program has to make a separate system call for each send and receive operation.

The Push program needs only one system call. It sends the message to all destinations and

collects the answers before returning to the user. A timeout mechanism is used to detect

site failures.

Table 3 reports the results of this experiment. We did not implement a kernel-level version

of multi RPC. The numbers in the first column are estimates that we obtained using the

measurements observed in [BMR87]. For twenty destinations, we observe a 27% improvement

over the user-level program and a 26% degradation from the kernel-level routine. This

is better than the performance observed in the multicast experiment, where we had only

a 15% improvement over the user-level program and a 31% degradation from the native

kernel version. This is because each destination requires two system calls for the user-level

implementation of multi RPC. Push is especially efficient when the user-level implementation

of a service demands a heavy user-kernel interaction. The high overhead observed for _ne

destination in the Push implementation is due to the extra complexity added by Push to

the system call abstraction. Subsection 3.5 suggests ways to reduce this overhead. The

10

Number kernel user
of level level

destinations SE SE

1
5
10
15
20

Push

2.2 3.0 6.6
9.5 14.9 14.6

18.5 29.7 25.0
29.5 44.3 35.6
36.5 59.0 46.2

Table 3: Multi RPC timing (in ms)

multi RPC programcan beeasily modified to provideservicesthat read/write data from/to
different sites with onesystem call. Quorum formation can also be efficiently implemented
using similar kernel-residentroutines[GifT9].

3.3 Commitment Protocol

In Camelot [Spe86], the authors suggest that certain distributed transactions protocols can

be added to the operating system to improve performance and to raise the level of the operat-

ing system interface. In database-oriented operating systems, commitment protocols can be

added to the kernel. During transaction processing, the addresses of the participant sites can

be registered. When the system is ready to commit the transaction, a single command in the

database code will suffice. The performance is improved because of the reduced user-kernel

interaction. The database system can also readily switch between alternative commitment

protocols according to the demands of the system. Two-phase commit protocols are often

used despite their blocking drawback [Ske82], because the message exchanges that take place

during each phase impose a significant overhead on the system. The performance improve-

ments provided by Push can make the implementation of three-phase commit protocols a

practical solution to the blocking problems.

The two-phase commitment protocol used for this experiment is an extension of the multi

RPC routine. The first phase is basically a multi RPC. In the second phase, the commitment

decision is multicast to all participant sites. Since Push provides access to the file system,

we can easily add logging operations to the protocol. Logging overhead has a significant

impact on database performance, especially on transaction response time. Most of data I/O

activity can be optimized by adequate caching policies. Writes to the log however, can not

be delayed and have to be carried out before any commit decision is made. Push offers

mechanisms to optimize those functions. Different schemas for interleaving communication,

logging and computation can be readily tested with Push.

11

Table 4, shows commit times for different sets of participant sites. These times do not

Number kernel

of level

participants SE

1

5

l0

15

20

3.0

13.2

26.0

40.8

51.5

user

level Push

SE

4.2 7.5

20.8 19.1

41.4 34.0

61.8 49.1

82.4 64.2

Table 4: Commit protocol timing (in ms)

include any disk activity. The user-level implementation of the two-phase commitment pro-

tocol demands three system calls per participant site plus the necessary logging activity,

which may result in several additional system calls for writing to the disk log. The per-

formance of the Push version is closer to that of the kernel-level version. For twenty sites,

the performance is improved by 28% with respect to the user-level implementation and the

degradation from the kernel-level implementation is only 24%.

3.4 File Copy

The response time of transaction processing depends on the performance of the underlying

file system. The user interface presented by the file system may not be convenient for

implementing transaction processing algorithms [Sto81]. We have written Push routines that

extend the Unix file system to accommodate it to the demands of database systems. These

routines use the file system primitives creat, open, close, read, write provided by the Push

machine. Push routines can implement indexed access to file records, provide encryption

capabilities, support recovery from crashes, etc. Since this is done inside the kernel, security

and transparency are automatically provided.

The Push program in appendix C requires only one system call to copy a file, independent

of its length. Table 5, shows the performance of that program. A similar, user-level facility

produced slightly slower results. Currently, Push uses the standard Unix file system call

interface. We are working on the implementation of a more efficient file system primitives

for Push. In the future, Push programs will be able to avoid the overhead of copying data

between the kernel input and output buffers, saving up to 20% of the time.

12

[Bytes: IlK t4K]16K 164K 1256K I 1M [2M I 4M [8M I
[Tim_: [6 I 11 I 33 I t2gl 596]2'504118"282142'6161 92"°99[

Table 5: File copy times (in ms)

3.5 Performance Improvements to the Push Machine

Performance of the Push implementation can be improved in several ways. The general

purpose memory allocator for the SunOS kernel is too inefficient, especially for small chunks

of memory. We measured 500 #s for the allocation-de.allocation of 50 bytes. We plan to

have our own memory allocation scheme to avoid this overhead. The relative high start-up

cost (highlighted by the cost of the services for a single destination) can be optimized bv

reducing the number of times Push has to cross the user/kernel boundary during input-

output of parameters. Finally, the Push machine itself can be made more powerful to reduce

the interpretation overhead (Push programs would consist of less instructions). For example,

instead of the sequence push a, push l, push m, send, which is currently used to send the

message m to network address a, we would have one instruction, namely send m, l, a.

4 Other Paradigms for Extensible Operating Systems

Several paradigms to achieve extensibility in operating systems have been proposed and

implemented. They include parameterized operating systems, minimal kernels, synthesized

code, streams, and the packet filter approach.

Monolithic operating systems offer a limited degree of flexibility. Configuration files and

compilation or boot-time parameters are used by those systems to alleviate the problem.

Digital Equipment Corporation's configuration expert system, XICON, can assist users in the

customized configuration of a complete computing system IBM84]. To avoid overcrowding in

the kernel, certain operating systems services have been implemented as user-level processes.

These processes called daemons, run in close relation with the kernel. However, because all

crucial information resides inside the kernel, performance and even consistency cannot be

guaranteed. For example, in the context of Unix, the use of a daemon to implement routing

protocols introduces inconsistencies between the views of the routing tables for the daemon

and the kernel. Push programs running inside the kernel can avoid such inconsistencies by

directly accessing kernel tables. Furthermore, the increased flexibility provided by Push can

significantly reduce the size of these systems. The operating system would not have to be

configured with all possible services.

Hoare proposed the small-kernel approach to operating systems [Hoa72]. Under this

model, the kernel provides only basic services, i.e., process and memory management, and

13

interprocess communication. On top of this infrastructure, a customized operating system

can be built to support a given processing and hardware environment. His thesis is valid

for time-sharing environments, where the basic task of the operating system is to share the

computer resources among a variety of users. In this case, generalizing the operating system

services to accommodate all potential uses of the system results in obtrusive, unreliable, and

inefficient kernels.

In the last decade, several small-kernel operating systems have been proposed and im-

plemented [Che84, YTR+87, DJA88, RAA+88]. Operating system services are provided as

server processes. These servers can provide not only conventional operating system services

such as file systems and network communication, but many other services for different ap-

plications. For example, we could have lock managers, atomicity controllers, consistency

controllers to support distributed transaction processing. This approach is inappropriate

for architectures with expensive context switches, since the kernel and the servers in the

operating system are implemented in separate hardware protection domains. Switching be-

tween domains significantly increases the cost of the services. The operating system support

demanded by large applications like distributed database management systems can be deter-

mined in advance and be included in the kernel. The resulting specialized kernel will provide

better support for the implementation of reliable, high-performance database systems. Push

can be used in a small kernel to supply operating system services without context switch

overhead.

The Synthesis kernel suggests a solution that goes beyond the efficiency/power tradeoff

that was mentioned above [PMI88]. This approach employs a monolithic kernel and uses

several techniques to specialize the kernel code that executes specific requests. These tech-

niques include the elimination of redundant computation and the collapsing of kernel layers.

Synthesized code is reported to reduce the conventional execution path of some system calls

by a factor of 10-20. This makes sense in general-purpose operating systems, where every

user request has to be penalized by layers of code, that may be unnecessary for that specific

request. For example, the Unix BSD model for interprocess communication, whose main

goal is generality, results in an expensive sequence of procedure calls. Many of those proce-

dure calls are irrelevant to individual messages [BMR87]. The Synthesis project also studied

the problem of reducing the context switch overhead [MP89]. Their solution is based on

additional hardware support. Push can be used to reduce context switch time along with

Synthesis improvements in the performance of layered code, on systems without the special

hardware support.

Streams increase the modularity and reusability of kernel code in the input-output sub-

system [Rit84]. Streams try to eliminate the duplication of functionality existing in con-

ventional device drivers. A stream is a two-way connection between a process and a device

driver. Modules that process data flowing along this two-way path can be inserted and

deleted dynamically, changing the behavior of the user interface. For instance, a user can

create a stream between his process and a network device driver. Communication modules

14

can then be added to that stream to implement a given suite of protocols. Currently, only

kernel-resident stream modules can be pushed to and popped from a stream. Push offers

increased flexibility by allowing users to write and push their own modules, once the initial

raw stream has been created. Here, we see a synergism, produced by the cooperative use

of streams and Push. New communication protocol suites can be implemented and tested

using a stream connecting the user with the network interface. Modules written in Push can

then implement the different layers of the protocol suite.

The packet filter presents another alternative to the efficiency/flexibility dilemma for

network code implementation [MRA87]. The packet filter demultiplexes network packets

according to rules specified by the users. These rules can be quite complex and can be

changed dynamically. By running inside the kernel, the packet filter eliminates much of
the context switch overhead incurred by user-level demultiplexers. At the same time, the

overhead introduced bv the interperter does not significantly affect the performance of net-

work protocols when compared with native kernel code. The packet filter implementation

supports evaluation of simple predicates. Push extends the technique to general purpose

algorithms.
Extensions to the Unix file system have also been proposed in [BP88]. There, the addi-

tional file system services are implemented in user-level servers. The Unix kernel is modified

to associate special processing requests with files. When a read, write, open, or close op-

eration is invoked on such a file, the request is routed through a designated process, which

may modify the interpretation of the request. For instance, an encrypted file system can be

implemented transparently by modifying the read and write system calls to automatically

encrypt and decrypt blocks of the file. Push extends [BP88] by providing the same function-

ality with enhanced performance and security. For instance, in the Push implementation

of the encrypted file system encryption and decryption would be carried out entirely in the

kernel, reducing the security risk.

5 Summary and Future Work

Push is a tool that allows database implementors to adjust the operating system functionality

to their needs without sacrificing efficiency. For services that demand a constant interaction

with the kernel, the performance advantages of Push over user-level implementations are

clear. On the other hand, implementations of kernel code demand more effort than the

corresponding implementations using Push. If performance is a real issue, and services have

to be implemented inside the kernel, Push still can be used to test the services before the

actual implementation takes place. The overhead in size and interpretation time introduced

by Push are relatively small and their effects on the performance of an operating system

service can be predicted with acceptable accuracy. We can determine the number of instruc-

tions executed by a Push program, and we have good estimates for the interpretation times

15

of each Push instruction. This is important when using Push as an experimental tool to

compare the performance of two or more potential kernel implementations of an operating

system function.

We are building a simple .yet powerful Push interface to basic operating system services

already existing in the kernel. We want to extend the current implementation so that new

operating system services implemented with Push can be tested in the context of the Raid

distributed database system [BR89].

16

References

[BHG87]

IBM84]

[BM89]

[BMR871

[BMRS89]

[BP88]

[BR891

[Che84]

[DJA881

[Gif791

[Hoa72]

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Publishing Company, 1987.

J. Bachant and J. McDermot. R1 revisited: Four years in the trenches. AI

Magazine, 5(3):21-32, September 1984.

Kenneth Birman and Keith Marzullo. ISIS and the META project. Sun Tech-

nology, pages 90-104, July 1989.

Bharat Bhargava, Tom Mueller, and John Riedl. Experimental analysis of layered

Ethernet software. In Proc of the ACM-IEEE Computer Society I987 Fall Joint

Computer Conference, pages 559-568, Dallas, Texas, October 1987.

Bharat Bhargava, Enrique Mafia. John Riedl. and Bradley Sauder. Implemen-
tation and measurements of an efficient communication facility for distributed

database systems. In Proc of the Fifth International Conference on Data Engi-

neering, Los Angeles, California, February 1989.

Brian N. Bershad and C. Brian Pinkerton. Watchdogs: Extending the UNIX file

system. In Proc of the USENIX Winter Conference, pages 267-275, Dallas, TX,

February 1988.

Bharat Bhargava and John Riedl. The Raid distributed database system. IEEE

Transactions on Software Engineering, 15(6), June 1989.

David R. Cheriton. The V kernel: A software base for distributed systems. IEEE

Software, 1(2):19-42, April 1984.

Partha Dasgupta, Richard J. LeBlanc Jr., and William F. Appelbe. The

CLOUDS distributed operating system: Functional description, implementation

details and related work. In Proc of the 8th Intl Conf on Distributed Computing

Systems, San Jose, CA, June 1988.

D. K. Gifford. Weighted voting for replicated data. In Proc of the 7th Symposium

on Operating Systems Principles, pages 150-162, Asilomar, California, December

1979.

C. A. R. Hoare. Operating systems: Their purpose, objectives, functions, and

scope. In Hoare and Perrot, editors, Operating System Techniques, pages 11-25.

Academic Press, 1972.

17

IMP89]

[MRA87]

[PMI88]

[RAA+88]

[Rit84]

[SDE85]

[Ske82]

[Spe86]

[Sto81]

[YTR+87]

Henry Massalin and Calton Pu. Fine-grain scheduling. In Proc of the USENLY

Workshop on Experiences with Distributed and Multiprocessor Systems, pages

91-104, Fort Lauderdale, FL, October 1989.

Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. The packet filter:

An efficient mechanism for user-level network code. In Proc of the ilth ACM

Symposium on Operating Systems Principles, pages 39-51, Austin, TX, November

1987.

Calton Pu, Henry Massalin, and John Ioannidis. The Synthesis kernel. Comput-

ing Systems, 1(1):11-32, 1988.

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien. M. Guillemont, F. Her-

rmann, C. Kaiser. S. Langlois, P. L&anard, and W. Neuhauser. CHORUS dis-

tributed operating system. Computing Systems, 1(4):305-370, 1988.

D. M. Ritchie. A stream input-output system. AT_JT Bell Laboratories Technical

Journal, 63(8):1897-1910, October 1984.

Michael Stonebraker, Deborah DuBourdieux, and William Edwards. Problems in

supporting data base transactions in an operating system transaction manager.

Operating System Review, 19(1):6-14, January 1985.

D. Skeen. Nonblocking commit protocols. In Proc of the A CM SIGMOD Con-

ference on Management of Data, pages 133-147, Orlando, Florida, June 1982.

Alfred Z. Spector. Communication support in operating systems for distributed

transactions. In Networking in Open Systems, pages 313-324. Springer Verlag,

August 1986.

Michael Stonebraker. Operating system support for database management. Com-

munications of the ACM, 24(7):412-418, July 1981.

M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky,

D. Black, and R. Baron. The duality of memory and communication in the imple-

mentation of a multiprocessor operating system. In Proc of the 11th Symposium

on Operating Systems Principles, pages 63-76, Austin, TX, November 1987.

18

APPENDICES

A Summary of the Push Operations

Arguments in italics are from the stack. Other arguments are compiled into the instruction.

push i push i on the stack

pop v pop a value off the stack and assign it to variable v

dec v decrement the value of v by one

inc v increment the value of v by one

add a b push a + b on the stack

sub a b push a - b on the stack

jmp 1 jump to label 1

jz [pop one element off the stack; jump to label 1 if zero

jnz l pop one element off the stack; jump to label l if not zero

alloc l v allocate l bytes to pointer v

free b free memory block b

copy a b I copy I bytes from a to b

compare a b I compare l bytes from addresses a and b

send m l a send l bytes from buffer m to network address a

recv m l a receive at most l bytes at address rn

creat n m create a file with name n and mode m

open n f open the file n to R/W according to the flags f

close f close the file with file descriptor f

read f b I read l bytes from file f to buffer b

write f b l write I bytes from buffer b to file f

settimer s l set a timer for s seconds; if the timer expires jump to label l

stoptimer disable a timer set earlier

treset start timing

tprint stop timing, place elapsed time on the stack

printi v print integer v

prints l v print I bytes, starting at address v

return return to the user level

19

B Push Multicast Program

%Push multicast procedure

addrlen def 6

addrs in

addrcnt in

msg in

msglen in

address

integer
address

integer

nxtaddr var address

push addrs

pop nxtaddr

loop push nxtaddr

push msglen

push msg
send

push nxtaddr

push addrlen
add

pop nxtaddr

push addrcnt
dec

dup

pop addrcnt

jgt loop

return

70 nxtaddr = addrs

% send (msg, msglen, nxtaddr)

% nxtaddr = nxtaddr + addrlen

% addrcnt = addrcnt - 1

% if (addrcnt > 0) goto loop

2O

C Push File Copy Routine

BLEN def 1024

READ def 0

WRITE def 1

pathr in address

pathw in address
buf var address

len vat integer

fdr var integer

fdw var integer

push BLEN
alloc bur

push READ

push pathr

open

pop fdr

push WRITE

push pathw

open
pop fdw

%open source and destination files

11 push BLEN

push buf

push fdr
read

dup

jle 12

push buf

push fdw
write

pop len

jmp ll

%read from source file

%write to destination file

%loop until end of source file

12 push fdr
close

push fdw
close

%close files

return

21

